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Abstract 

The paper presents an application of Levenberg-Marquardt algorithm to parametric optimization of the minimax
type of measurement systems. For the assumed objective function given by the integral square error,
optimization of the third-order model is carried out and explained in detail. The optimization procedure is 
realized in three stages. The optimization method presented in the paper can find broad application in the process
of  determining optimum models of systems, especially for those that operate in dynamic states. 
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1. Introduction 

The dynamic development of advanced numerical techniques observed in recent years 
together with constantly increasing computational efficiency of computers have a great 
influence on the development of various methods of mathematical modeling of measurement 
systems [2, 8]. The aim of such modeling is to synthesize models that map precisely the 
dynamic properties of real systems. However, it is not possible to map precisely the properties 
of a real system by its model.  Application of higher-order models usually  gives better 
mapping, but on the other hand, the analysis of dynamic properties of such models is most 
often difficult and time-consuming. Hence a tendency has developed towards replacing 
higher-order models with simplified models [5]. The class and order of such models can be 
determined by means of approximated knowledge of properties and characteristics of the 
modeling system, which often results from the modeler’s experience, whereas their 
parameters are determined by means of methods that minimize the mapping error, taking into 
account all possible input signals. As it is impossible to analyze the full set of all imaginable 
input dynamic signals, it is suggested to solve this problem by using one signal which 
maximizes the assumed objective function [2, 3, 7]. In this way, the mapping error being 
determined is credible for any input. The paper presents such a  minimax procedure by means 
of the Levenberg-Marquardt optimization algorithm.  
 
2. Minimax optimization of integral square error  

 
Minimax optimization of integral square error includes three main numerical computation 

stages. At the first stage the standard of the mathematical model is determined. Its order is 
equal to the order of the modeled system. At the second stage, from among all possible inputs 

),(tu  signal )(0 tu  maximizing the integral square error )( 02 uI  (1) is determined - Fig. 1 [2, 
3, 7]. 
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Fig. 1. Block diagram of system for determination of signal )(0 tu  maximizing the integral square error. 
 
The output of the system is defined by: 
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and the output of standard: 
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The error equals: 
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where: 
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1 2( ), ( )k t k t − impulse responses of system and standard respectively. 
At the third stage the class and order of the simplified model are assumed. For this model, 

by means of the signal u0(t), parameters minimizing the integral square error are determined.  
Fig. 2 presents the block diagram of minimax optimization by means of the Levenberg-
Marquardt algorithm. 
 

 
 

Fig. 2. Block diagram of minimax optimization of measurement systems by means of the Levenberg-Marquardt 
algorithm. 



3. Development of standard model 
 

In the presented minimax method, the class and order of the standard model corresponds 
with the class and order of the real system, whereas the selection of the standard parameters 
can be made by optimization methods [6]. Non-deformation transformation is assumed in this 
case. The problem of optimization of the standards parameters is then reduced to 
determination of such values which ensure that their characteristics are close to the 
characteristics of the non-deformation system. In the broadest range of frequencies their 
magnitude characteristics should be flat, while phase characteristics should be linear. For 
ideal non-deformation systems the relation between input y(t) vs. output u(t) is: 

 

                                                          ( ) ( ),y t a u t= ⋅                                                              (6) 
 

In practice, it is impossible to realize (6). Therefore the relation (7) is adopted more 
frequently:  
                                                            ( ) ( ),y t a u t τ= ⋅ −                                                           (7) 
       
where τ - time delay, a  - amplification coefficient.  

For standard model development an upper boundary of frequency gsω  is assumed. The 

ranges of constancy Aω  of the magnitude-frequency characteristic and linearity of the phase-
frequency characteristic ϕω  are most often determined by means of a particular frequency for 

which these characteristics do not differ more than A∆  and ϕ∆  − Figs 3, 4.  
The selection of standard model parameters should ensure maximum ranges of both 

constancy Aω  and linearity of .ϕω  This range is defined by coefficient η  as follows: 
 

                                                     .A Aφ φη ω ω ω ω= + − −                                                        (8) 
 

The solution for which coefficient η  reaches a  maximum value is recognized as the 
optimal one [6]. 

 
 

 
 

Fig. 3.  The range of constancy of magnitude-frequency characteristic. 
 



 
 

Fig. 4. The range of linearity of phase-frequency characteristic. 
 
 
4. Procedure for determining the signal maximizing the integral square error 
  

In relevant literature it has been proved that an input signal with imposed constraint on 
magnitude A and constraint on rate of change ϑ  maximizes the integral square-error criterion 
only when it reaches the imposed constraints over [0, T]. If the only constraint imposed on a 
signal is the magnitude constraint, then it is always of the “bang-bang” type. In the case when 
there are two simultaneous constraints, this signal can be only in the form of triangles or of 
trapezoids with the slopes inclination resulting from ϑ  and A [2, 3].  

For the integral square-error and for a signal with two constraints A and ϑ  imposed 
simultaneously, the analytical solution describing its shape has not been worked out so far. 
Additionally, the function space of a possible solution is the space of infinite power of a set 
and of infinite dimension [4].  

A good result can be obtained if the evolutional algorithm is applied [7].  It assures that the 
solutions are correct and received in a very short calculation time. In the evolutional 
algorithm we can assume that the switching moments  for 1−< ii tt  or 1+> ii tt , i=1, 2, …, n-1 
cannot appear in the generated sequence of signals ).(tu                              
 
5. Application of the Levenberg-Marquardt algorithm for minimax optimisation 

 
The Levenberg-Marquardt algorithm combines the steepest descent method with the 

Gauss-Newton method and operates correctly in search for parameters both far from and close 
to the optimum one. In the former case the algorithm of the linear model of steepest descent is 
used, and in the latter one - squared convergence. Fast convergence is an additional advantage 
of the algorithm [1]. 

The Levenberg-Marquardt algorithm is an iterative method, in which the vector of 
unknown parameters is determined during step 1+k  by the equation: 
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The notations in (9-12) are as follows: 
− ,...,,2,1 pk =  p  − number of iteration loops; 
− ),()( tkmxn aJ − Jacobian matrix; 

− )( mxmI  − unit matrix; 
− kµ − scalar, its value changes during iteration; 
− ]a...,,a,a[ 21 m=a  −  model parameters searched for. 
The Levenberg-Marquardt algorithm is used for computation in the following stages: 
Stage 1, for  k=1 
− Assume the initial values of the parameters of vector ;ka  
− Assume the initial value of the coefficient kµ  (e.g. kµ = 0.1); 
− Solve the matrix equation (12) and calculate (11);  
− Calculate the value of error (10); 
− Determine the parameters of vector ,1+ka  following (9). 
Stage 2 and further steps, for pk ...,,3,2=  
− Update the values of the parameters of vector ;ka  
− Solve the matrix equations  (12) , calculate (11) and (9); 
− Calculate the value of error (10); 
− Compare the values of error (10) for the step k and the step k−1 If the result is 

),,(),( 1 tyty kk −≥ aa  multiply kµ  by the specified value ℜ∈λ  (e.g. 10=λ ) and return to  
step 2 of stage 2. If the result is ),(),( 1 tyty kk −< aa  divide kµ  by the value λ  and return 
to step 1 of stage 2. 
The initial parameters of vector a are assumed in an arbitrary way, e.g. ].1...,,1,1[=a  
If in a consecutive stage the decrease in the value of error (10) is very small and 

insignificant, we then finish the iteration process. We fix 0=kµ  and determine the final result 
for the parameters of vector a If the value of coefficient kµ  is high, it means that the solution 
is not satisfactory [1]. The values of parameters of the vector are not optimum ones, and the 
value of error (10) is not at the minimum level. At this point: 
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can be assumed and this leads to the steepest descent method, for which we have: 
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If the value of coefficient kµ  is small, it means that the values of the parameters of vector a 
are close to the optimum solution. Then: 
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which means that the Levenberg-Marquardt algorithm is reduced to the Gauss-Newton 
method: 
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The selection of coefficient values µ  and λ  depends on the programmer’s experience and 
in practical solutions they are usually assumed as: 1.0=µ  and 10=λ [1]. 
 
6. Application Example 
 

Let us examine an  exemplary model: 
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The mathematical model of the standard was obtained by means of the Levenberg-

Marquardt optimization algorithm and procedure presented in Point 3. This model is: 
 

 2 2 2
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                                              for Aω = 0.55 ,
s

rad  ϕω = 0.45 
s

rad .                                       (18) 
 
For optimization needs, the following parameters have been assumed: 

1. Digitization step 0.01s; 
2. Upper boundary of frequency gsω = 10 

s
rad ; 

3. The value of A∆  and ϕ∆  on the level of  5% of ).0(A  
In order to determine signal )(0 tu  maximizing (1), for two constraints imposed, the 

procedure described in Point 4 was applied.  This signal was obtained by means of 
evolutionary methods [7]. The magnitude A = 1 was assumed and the rate of change ϑ  = 0.40 
was calculated as the maximum of the impulse response )(6 tk  of the system (17). 

Signal )(0 tu is in the form: 
 

u0 ⇒ ϑ+[0.0, 1.66], ϑ−[1.66, 5,82], -1[5.82,  6.08], ϑ+[6.08, 11.08], +1[11.08, 11.72], 
ϑ−[11.72, 16.72], -1[16.72,  20.00]                                                                                    (19) 
   

and it generates the maximum value of the error equal )( 02 uI = 4.86 V2⋅s. 
In (19) the following notation is used: ϑ+ - signal increasing in the interval,  ϑ−  - signal 

decreasing in the interval, 1± - a constant signal in [0,20] [2, 3, 7]. Time switchings of ),(0 tu  
presented by means of (19) are expressed in seconds. 

Eq. 20 presents the structure of the third-order model assumed for minimax optimization,  
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As the result of optimization, the following parameters have been obtained: ,37.1a1 =  
71.1a2 =  and minimax )( 02 uI  = 2.68V2⋅s. 

Fig. 5 presents signal ),(0 tu errors )(ty  and )(tyopt  corresponding to it. 
 

 

 
 

Fig. 5.  Signal ),(0 tu  and corresponding errors )(ty  and )(tyopt .  

 
7. Conclusion 

 
The paper presents an application of the Levenberg-Marquardt algorithm to the 

optimization of parameters of a mathematical model of measurement systems according to 
minimax of integral square error.  The presented method minimizes the mapping error of a 
simplified model with reference to a higher-order model, through application of an indirect 
standard model. The model of the standard is obtained by way of optimization of its 
parameters with respect to non-deformation transformation.   

The presented results were obtained by means of computer programs implemented in 
C/C++.  

As an example, the optimization of parameters of a third-order model with reference to a 
sixth-order system was presented.  
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